Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jérôme Canivet, Bruno Therrien and Georg Süss-Fink*

Institut de Chimie, Université de Neuchâtel,
Case postale 2, CH-2007 Neuchâtel,
Switzerland

Correspondence e-mail:
georg.suess-fink@unine.ch

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.023$
$w R$ factor $=0.079$
Data-to-parameter ratio $=17.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-chloro-bis[$\boldsymbol{\eta}^{6}$-benzene)chlororuthenium(II)] chloroform disolvate

In the centrosymmetric dinuclear title complex, $\left[\mathrm{RuCl}_{2}\left(\eta^{6}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]_{2} \cdot 2 \mathrm{CHCl}_{3}$ or $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right] \cdot 2 \mathrm{CHCl}_{3}$, accessible from $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ and 1,3-cyclohexadiene, the benzene ligands are involved in slipped-parallel $\pi-\pi$ stacking interactions with neighbouring molecules, thus forming one-dimensional polymeric chains.

Comment

The title compound, (I), which has been known for more than 25 years (Bennett \& Smith, 1974) and extensively used as a building block in organometallic chemistry, has never been characterized by X-ray structure analysis. It was crystallized here as the chloroform disolvate.

(I)

The two halves of the dinuclear complex (Fig. 1) are related by a crystallographic inversion center. The bond distances and angles (Table 1) are similar to those of other $\left[\mathrm{RuCl}_{2}\left(\eta^{6}\right.\right.$ arene) $]_{2}$ complexes; arene $=$ hexamethylbenzene (McCormick \& Gleason, 1988), trindane (Gupta et al., 1997), ethylbenzoate (Therrien et al., 1998), 1,2,3,4-tetrahydronaphthalene (Bown \& Bennett, 1999), 1,2- $\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{Me}) \mathrm{COOMe}$ (Braga et al., 2001), hexaethylbenzene (Baldwin et al., 2002), indane (Vieille-Petit et al., 2002) and para-cymene (Allardyce et al., 2003).

Figure 1

The molecular structure of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). The symmetry code is as in Table 1. The centrosymmetrically related chloroform molecule is not shown.

Received 28 April 2005
Accepted 3 May 2005
Online 14 May 2005

In (I), the benzene ring is planar and the Ru -(benzene centroid) distance is $1.646 \AA$. The metal possesses two bridging and one terminal chloride ions: the bridging $\mathrm{Ru}-\mathrm{Cl}$ distances are 2.4495 (11) and 2.4580 (9) \AA, and the terminal $\mathrm{Ru}-\mathrm{Cl}$ distance is 2.3911 (9) \AA. The benzene ligands are involved in slipped-parallel $\pi-\pi$ stacking interactions with neighbouring molecules (Fig. 2) and the shortest intermolecular C..C distance is $3.218(5) \AA$. The distance observed between the centers of the interacting π systems ($4.07 \AA$) is in good agreement with the theoretical value calculated for this π stacking mode (Tsuzuki et al., 2002). No meaningful interactions between the dinuclear ruthenium complex and the chloroform molecule are observed.

Experimental

$\left[\mathrm{RuCl}_{2}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]_{2}$ was dissolved in hot chloroform and orange crystals of (I) suitable for X-ray diffraction analysis were obtained after 3 d by slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Ru}_{2} \mathrm{Cl}_{4}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\right] \cdot 2 \mathrm{CHCl}_{3}$
$M_{r}=738.90$
Triclinic, $P \overline{1}$
$a=7.9951$ (10) Å
$b=8.1835$ (11) \AA
$c=9.6545$ (13) A
$\alpha=69.312(15)^{\circ}$
$\beta=69.676(15)^{\circ}$
$\gamma=86.164(16)^{\circ}$
$V=553.03(15) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=2.219 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5113 \\
& \quad \text { reflections } \\
& \theta=2.4-25.9^{\circ} \\
& \mu=2.57 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Block, orange } \\
& 0.35 \times 0.23 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS diffractometer φ scans
Absorption correction: refined from
$\Delta F(D I F A B S$; Walker \& Stuart,
1983)
$T_{\text {min }}=0.397, T_{\text {max }}=0.794$
4350 measured reflections
2014 independent reflections 1817 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=25.9^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-11 \rightarrow 11$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0458 P)^{2}\right. \\
\quad+0.223 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.59 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.88 \mathrm{e}^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.079$
$S=1.20$
2014 reflections
118 parameters
H -atom parameters constrained

Figure 2
Part of an infinite chain of $\left[\mathrm{RuCl}_{2}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right]_{2}$ molecules in (I), arising through slipped-parallel $\pi-\pi$ stacking interactions.

H atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and treated as riding atoms with the constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ applied.

Data collection: EXPOSE in IPDS Software (Stoe \& Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the Swiss National Science Foundation (grant No. 20-61227-00). We thank Professor H. Stoeckli-Evans for helpful discussions and free access to X-ray facilities.

References

Allardyce, C. S., Dyson, P. J., Ellis, D. J., Salter, P. A. \& Scopelliti, R. (2003). J. Organomet. Chem. 668, 35-42.
Baldwin, R., Bennett, M. A., Hockless, D. C. R., Pertici, P., Verrazzani, A., Uccello Barretta, G., Marchetti, F. \& Salvadori, P. (2002). J. Chem. Soc. Dalton Trans. pp. 4488-4496.
Bennett, M. A. \& Smith, A. K. (1974). J. Chem. Soc. Dalton Trans. pp. 233240.

Bown, M. \& Bennett, M. A. (1999). Acta Cryst. C55, 852-854.
Braga, D., Abati, A., Scaccianoce, L., Johnson, B. F. G. \& Grepioni, F. (2001). Solid State Sci. 3, 783-788.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gupta, H. K., Lock, P. E., Hughes, D. W. \& McGlinchey, M. J. (1997). Organometallics, 16, 4355-4361.
McCormick, F. B. \& Gleason, W. B. (1988). Acta Cryst. C44, 603-605.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Therrien, B., Ward, T. R., Pilkington, M., Hoffmann, C., Gilardoni, F. \& Weber, J. (1998). Organometallics, 17, 330-337.

Tsuzuki, S., Honda, K., Uchimura, T., Mikami, M. \& Tanabe, K. (2002). J. Am. Chem. Soc. 124, 104-112.
Vieille-Petit, L., Therrien, B. \& Süss-Fink, G. (2002). Acta Cryst. E58, m656m657.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

